Buckling of the cylindrical shell joint with annular plates under external pressure

نویسندگان

چکیده

By means of an asymptotic method the buckling under uniform external pressure thin cylindrical shell supported by identical annular plates is analyzed. Boundary conditions on internal parallel joined to a plate are obtained. At edges free support introduced. We seek approximate solutions eigenvalue problem as sum slowly varying functions and edge effect integrals. On parallel, where joint with shell, main boundary for formulation zero approximation This describes also vibrations simply beam stiffened springs. Its solution we linear combinations Krylov’s functions. It shown, that in it possible replace narrow circular beam. increase width stiffness corresponding spring tend constant. occurs because localization deformations near plate. As example dimensionless critical case when one found. The replacement does not lead appreciable change pressure, however wide model gives overestimated value pressure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

متن کامل

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

متن کامل

Finite Element Analysis of Buckling of Thin Cylindrical Shell Subjected to Uniform External Pressure

One of the common failure modes of thin cylindrical shell subjected external pressure is buckling. The buckling pressure of these shell structures are dominantly affected by the geometrical imperfections present in the cylindrical shell which are very difficult to alleviate during manufacturing process. In this work, only three types of geometrical imperfection patterns are considered namely (a...

متن کامل

Field Study and Evaluation of Buckling Behavior of Cylindrical Steel Tanks with Geometric Imperfections under Uniform External Pressure

Construction and assembling process of shell structures has caused main problems. In these structures, there is no possibility for the integrated construction due to their large shell extent and they are built using a number of welded curved panel parts; hence, some geometrical imperfections emerge. Most of these imperfections are caused by the process of welding, transportation, inappropriate ...

متن کامل

Buckling Analysis of Cylindrical Grooved Shell under Axial Load Discs

In this paper, buckling of cylindrical grooved shells under axial load has been examined by theoretical and experimental methods. The shell is made of USA/API – X42 5L steel standards. This material is one of the most common materials used in gas, oil and petrochemical industries. The effect of spiral grooves on cylindrical shell was analyzed, and the results obtained from the Abaqus software w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ??????? ?????-?????????????? ????????????

سال: 2021

ISSN: ['1811-9905', '2542-2251']

DOI: https://doi.org/10.21638/spbu01.2021.208